## Math 42 Midterm 3 Review

You will need a calculator to solve the problems marked $\star$.
You should NOT use a calculator for any other problems.
[0] Write out all the basic identities:
[a] $\sin (-x)=$
$\cos (-x)=$
$\tan (-x)=$
$\sec (-x)=$
$\csc (-x)=$
$\cot (-x)=$
[b] $\quad \sin x=\frac{1}{}$
$\cos x=\frac{1}{}$
$\tan x=1$
$\sec x=\frac{1}{}$
$\csc x=\frac{1}{}$
$\cot x=\frac{1}{}$
[c] $\tan x=\frac{x}{x}$
$\cot x=\frac{x}{x}$
[d] $\quad{ }^{2} x+\quad{ }^{2} x=1$
${ }^{2} x-\quad{ }^{2} x=1 \underline{2}$ versions
$1+{ }^{2} x={ }^{2} x \underline{2}$ versions $\quad 1-\quad{ }^{2} x=\quad{ }^{2} x \underline{2}$ versions $\quad{ }^{2} x-1=\quad{ }^{2} x \underline{2}$ versions
[e] $\quad \sin (x+y)=$
$\cos (x+y)=$
$\tan (x+y)=$
$\sin (x-y)=$
$\cos (x-y)=$
$\tan (x-y)=$
[f] $\quad \sin 2 x=$
$\cos 2 x=$
3 versions
$\tan 2 x=$
[g] $\sin ^{2} x=$
$\cos ^{2} x=$
These answers should not contain the square of any function
[h] $\quad \sin \frac{1}{2} x=$
$\cos \frac{1}{2} x=$
$\tan \frac{1}{2} x=$
3 versions
[00] Prove the most difficult looking identities in the textbook exercises from sections 5.2,5.4, 5.5, chapter 5 review, chapter 5 test and additional homework assignment \#2.
[1] Simplify the following expressions completely.
A product of two factors is simpler than a sum of two terms.
There should be as few terms, factors and trigonometric functions as possible.
Exponents should be as small as possible (without using negative exponents).
[a] $\sec x \cot x \sin x$
[b] $(1-\sec x)(1+\cos x)$
[c] $\frac{\sec x}{\csc x}+\frac{\cos x}{\sin x}$
[d] $2 \cot 2 x-\cot x+\tan x$
[e] $6 \cos \frac{7 \pi}{12} \sin \frac{7 \pi}{12}$
[f] $5-10 \cos ^{2} \frac{3 \pi}{8}$
[g] $\sin ^{2} 165^{\circ}$
[h] $\frac{\tan ^{2} 75^{\circ}-1}{\tan 75^{\circ}}$
[i] $\cos 105^{\circ} \sin 15^{\circ}+\sin 105^{\circ} \cos 15^{\circ}$
[j] $\sin \frac{\pi}{4} \sin \frac{11 \pi}{12}+\cos \frac{\pi}{4} \cos \frac{11 \pi}{12}$
[2] If $\sec x=-\frac{7}{5}$ and $\pi<x<\frac{3 \pi}{2}$, and $\cot y=-\frac{3}{4}$ and $\sin y>0$, find the values of the following expressions. Simplify your final answers.
[a] $\sin 2 y$
[b] $\tan (x-y)$
[c] $\cos \frac{x}{2}$
[d] $\cos \left(x-\frac{5 \pi}{3}\right)$
[e] $\csc \frac{x}{2}$
[f] $\tan 2 x$
[g] $\sin \left(y+\arccos \left(-\frac{1}{5}\right)\right)$
[h] $\sec (x+y)$
[i] $\cos 2 y$
[3] Use the power reducing formulae to rewrite the following expressions using only the first powers of cosine.
Your final answers must NOT be in factored form. Simplify your final answers.
[a] $\sin ^{4} x$
[b] $\sin ^{2} x \cos ^{4} x$
[4] Rewrite the following expressions using only $\sin x, \cos x$ and/or $\tan x$.
Simplify your final answers to use as few trigonometric functions as possible.
[a] $\sin 3 x$
[b] $\tan 4 x$
[c] $\cos 4 x$
[5] Find the value of the following expressions. Simplify your final answers.
[a] $\cos \left(\arctan (-2)-\sin ^{-1}\left(-\frac{3}{7}\right)\right)$
[b] $\sin \left(2 \tan ^{-1} 3\right)$
[c] $\tan \left(\sin ^{-1} \frac{1}{3}-\arccos \left(-\frac{2}{3}\right)\right)$
[6] Solve the following equations.
[a] $\tan x+3 \sqrt{3}=2(\sqrt{3}-\tan x)$
[b] $5(1+\csc x)=4-3 \cot ^{2} x$
[c] $4 \cos 4 x+2 \sqrt{2}=0$
[d] $\sqrt{3} \cot \frac{1}{3} x-3=0$
[e] $\sin 2 x+\sqrt{3} \cos x=0$
[f] $3 \cos \frac{1}{2} x-2 \cos x=1 \star$

