Math 42 Midterm 3 Review

You will need a calculator to solve the problems marked \bigstar . You should <u>NOT</u> use a calculator for any other problems.

[0] Write out all the basic identities:

[a]	$\sin(-x) =$	$\cos(-x) =$	$\tan(-x) =$
	$\sec(-x) =$	$\csc(-x) =$	$\cot(-x) =$
[b]	$\sin x = \frac{1}{1}$	$\cos x = \frac{1}{2}$	$\tan x = \frac{1}{1}$
	$\sec x = \frac{1}{2}$	$\csc x =$	$\cot x = $
[c]	$\tan x = \frac{x}{x}$	$\cot x = \frac{x}{x}$	
[d]	$x^{2}x + x^{2}x = 1$	$x^2 - x^2 = 1$ <u>2 versions</u>	
	$1 + {}^2x = {}^2x \text{ 2 versions}$	$1 - \frac{2}{x} = \frac{2}{x} \frac{2 \text{ versions}}{2 - x}$	$^2x - 1 = ^2x$ <u>2 versions</u>
[e]	$\sin(x+y) =$	$\cos(x+y) =$	$\tan(x+y) =$
	$\sin(x-y) =$	$\cos(x-y) =$	$\tan(x-y) =$
[f]	$\sin 2x =$	$\cos 2x = 3$ versions	$\tan 2x =$
[g]	$\sin^2 x =$	$\cos^2 x =$	<u>These answers should not contain</u> <u>the square of any function</u>
[h]	$\sin \frac{1}{2} x =$	$\cos\frac{1}{2}x =$	$\tan \frac{1}{2}x = \frac{3 \text{ versions}}{3 \text{ versions}}$

[00] Prove the most difficult looking identities in the textbook exercises from sections 5.2, 5.4, 5.5, chapter 5 review, chapter 5 test and additional homework assignment #2.

- [1] Simplify the following expressions completely.
 A product of two factors is simpler than a sum of two terms.
 There should be as few terms, factors and trigonometric functions as possible.
 Exponents should be as small as possible (without using negative exponents).
 - [a] $\sec x \cot x \sin x$ [b] $(1 - \sec x)(1 + \cos x)$ [c] $\frac{\sec x}{\csc x} + \frac{\cos x}{\sin x}$ [d] $2\cot 2x - \cot x + \tan x$ [e] $6\cos \frac{7\pi}{12} \sin \frac{7\pi}{12}$ [f] $5 - 10\cos^2 \frac{3\pi}{8}$ [g] $\sin^2 165^\circ$ [h] $\frac{\tan^2 75^\circ - 1}{\tan 75^\circ}$ [i] $\cos 105^\circ \sin 15^\circ + \sin 105^\circ \cos 15^\circ$
 - [j] $\sin \frac{\pi}{4} \sin \frac{11\pi}{12} + \cos \frac{\pi}{4} \cos \frac{11\pi}{12}$

[2] If sec $x = -\frac{7}{5}$ and $\pi < x < \frac{3\pi}{2}$, and cot $y = -\frac{3}{4}$ and sin y > 0, find the values of the following expressions. Simplify your final answers.

[a] $\sin 2y$	[b] $\tan(x-y)$	[c] $\cos\frac{x}{2}$
[d] $\cos(x - \frac{5\pi}{3})$	[e] $\operatorname{CSC} \frac{x}{2}$	[f] $\tan 2x$
[g] $\sin(y + \arccos(-\frac{1}{5}))$	[h] $\sec(x+y)$	[i] $\cos 2y$

[3] Use the power reducing formulae to rewrite the following expressions using only the first powers of cosine.Your final answers must <u>NOT</u> be in factored form. Simplify your final answers.

[a]
$$\sin^4 x$$
 [b] $\sin^2 x \cos^4 x$

[4] Rewrite the following expressions using only $\sin x$, $\cos x$ and/or $\tan x$. Simplify your final answers to use as few trigonometric functions as possible.

- [a] $\sin 3x$ [b] $\tan 4x$ [c] $\cos 4x$
- [5] Find the value of the following expressions. Simplify your final answers.
 - [a] $\cos(\arctan(-2) \sin^{-1}(-\frac{3}{7}))$ [b] $\sin(2\tan^{-1}3)$ [c] $\tan(\sin^{-1}\frac{1}{3} \arccos(-\frac{2}{3}))$
- [6] Solve the following equations.

[a]
$$\tan x + 3\sqrt{3} = 2(\sqrt{3} - \tan x)$$

[b] $5(1 + \csc x) = 4 - 3\cot^2 x$
[c] $4\cos 4x + 2\sqrt{2} = 0$
[d] $\sqrt{3}\cot \frac{1}{3}x - 3 = 0$
[e] $\sin 2x + \sqrt{3}\cos x = 0$
[f] $3\cos \frac{1}{2}x - 2\cos x = 1 \bigstar$